Pular para o conteúdo principal

 

 

 RELATIVIDADE DIMENSIONAL GRACELI.



 

TEORIA GRACELI GERAL E UNIFICATÓRIA DIMENSIONAL.

TEORIA GRACELI GERAL E UNIFICATÓRIA DIMENSIONAL.


ONDE CADA INFINITA PARTÍCULA TEM INFINITAS DIMENSÕES FORMANDO UM SISTEMA GERAL UNIFICATÓRIO COM PADRÕES DE VARIAÇÕES CONFORME AS PARTÍCULA QUE NO CASO PASSAM A REPRESENTAR DIMENSÕES, PADRÕES DE ENERGIAS E E PADRÕES POTENCIAIS DE TRANSFORMAÇÕES, INTERAÇÕES CATEGORIAS FÍSICAS DE GRACELI E OUTROS.


NA TEORIA DAS CORDAS PARTÍCULAS SÃO REPRESNTADAS POR VIBRAÇÕES.


JÁ NA TEORIA GRACELI GERAL E UNIFICATÓRIA DIMENSIONAL. NO CASO SÃO REPRENTADOS POR DIMENSÕES FÍSICAS E QUÍMICA DE GRACELI.



TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

 sistema indeterminístico Graceli ;

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

SISTEMA GRACELI INFINITO-DIMENSIONAL.




 SISTEMA GRACELI INFINITO-DIMENSIONAL.


COM  ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.

ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.


  TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA.



SISTEMA MULTIDIMENSIONAL  GRACELI

ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.


Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional].


DENTRO DE UMA CONCEPÇÃO QUE CADA ÁTOMO É FORMADO DE INFINITAs OUTRAS PARTÍCULAS, E COM INFINITAS OUTRAS ENERGIAS, INTERAÇÕES, TRANSFORMAÇÕES, E OUTROS FENÔMENOS, LOGO SE TEM EM CADA ÁTOMO E OU ELEMENTO QUÍMICO INFINITAS OUTRAS DIMENSÕES. COM INFINITAS VARIAÇÕES NAS CATEGORIAS DE GRACELI , QUE  SÃO: OS POTENCIAIS, TIPOS, NÍVEIS, E TEMPO DE AÇÃO ESPECÍFICO  DO FENÔMENO.

ONDE NOS SISTEMAS  DE GRACELI CATEGORIAS,  FENÔMENOS, ESTADOS, ENERGIAS, ESTRUTURAS, E OUTROS SÃO TIPOS E FORMAS DE DIMENSÕES..


FLUXOS ALEATÓRIOS DE ENERGIAS ELÉTRICA,  E FLUXOS DE SALTOS QUÂNTICOS INFINITESIMAIS E INDETERMINADOS.
SENDO QUE VARIAM CONFORME O SISTEMA INFINITO-DIMENSIONAL.


O SISTEMA INFINITO-DIMENSIONAL DE GRACELI, ASSIM, COMO O SISTEMA SDCTIE GRACELI [SISTEMA ENVOLVENDO DIMENSÕES DE GRACELI, E SUAS CATEGORIAS, ESTADOS FÍSICOS E ESTADOS FÍSICOS DE GRACELI, TRANSFORMAÇÕES E INTERAÇÕES], E OS TENSORES DE GRACELI TEM AÇÃO EM TODA A FÍSICA EM TODOS OS SEUS RAMOS E E DIVISÕES, ASSIM, COMO A QUÍMICA E A BIOLOGIA, QUE TODOS ESTES SE FUNDAMENTEM EM ENERGIAS, ONDAS, ESTRUTURAS, CATEGORIAS, ESTADOS, ESPECTROS, DIMENSÕES, E OUTROS.

OU SEJA, DENTRO DE UM SISTEMA GERAL DE GRACELI TODA FÍSICA DAS ESTRTURUAS, ENERGIAS, ONDAS, DIMENSÕES, ESTADOS, E CATEGORIAS. ESTÃO INSERIDOS NESTES SISTEMA DE GRACELI.

dentro de uma concepção que a matéria é infinitésima em termos de tipos e ínfimos diâmetro, logo esta diferenciação faz com que cada ínfima e infinitésima parte tenha ações, transformações, interaçõs, potenciaidades, e outros diferentes de uma das outras. logo se tem infinitas dimensões para cada ínfima e infinitésima parte e tipo.



VEJAMOS;



Representação esquemática do efeito fotoelétrico

efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) de frequência suficientemente alta, que depende do material, como por exemplo a radiação ultravioleta. Ele pode ser observado quando a luz incide numa placa de metal, arrancando elétrons da placa. Os elétrons ejetados são denominados fotoelétrons.[1]

Observado pela primeira vez por A. E. Becquerel em 1839 e confirmado por Heinrich Hertz em 1887,[2] o fenômeno é também conhecido por "efeito Hertz",[3][4] não sendo porém este termo de uso comum, mas descrito pela primeira vez por Albert Einstein, o efeito fotoelétrico explica como a luz de alta frequência libera elétrons de um material.[5]

De acordo com a teoria eletromagnética clássica, o efeito fotoelétrico poderia ser atribuído à transferência de energia da luz para um elétron. Nessa perspectiva, uma alteração na intensidade da luz induziria mudanças na energia cinética dos elétrons emitidos do metal. Além disso, de acordo com essa teoria, seria esperado que uma luz suficientemente fraca mostrasse um intervalo de tempo entre o brilho inicial de sua luz e a emissão subsequente de um elétron. No entanto, os resultados experimentais não se correlacionaram com nenhuma das duas previsões feitas pela teoria clássica.

Em vez disso, os elétrons são desalojados apenas pelo impacto dos fótons quando esses fótons atingem ou excedem uma frequência limite (energia). Abaixo desse limite, nenhum elétron é emitido do material, independentemente da intensidade da luz ou do tempo de exposição à luz (raramente, um elétron irá escapar absorvendo dois ou mais quanta; no entanto, isso é extremamente raro porque ao absorver quanta suficiente para escapar, o elétron provavelmente terá emitido o resto dos quanta absorvidos). Para dar sentido ao fato de que a luz pode ejetar elétrons mesmo que sua intensidade seja baixa, Albert Einstein propôs que um feixe de luz não é uma onda que se propaga através do espaço, mas uma coleção de pacotes de ondas discretas (fótons), cada um com energia. Isso esclareceu a descoberta anterior de Max Planck da relação de Planck (E = hν), ligando energia (E) e frequência (ν) como decorrentes da quantização de energia. O fator h é conhecido como a constante de Planck.[6][7][1] Em 1921 o alemão Albert Einstein recebeu o prêmio Nobel de Física por "suas contribuições para a física teórica e, especialmente, por sua descoberta da lei do efeito fotoelétrico."[8]

Descrição

Tomemos um exemplo: a luz vermelha de baixa frequência estimula os elétrons para fora de uma peça de metal; na visão clássica, a luz é uma onda contínua cuja energia está espalhada sobre a onda. Todavia, quando a luz fica mais intensa, mais elétrons são ejetados, contradizendo, assim a visão da física clássica que sugere que os mesmos deveriam se mover mais rápido (energia cinética) do que as ondas incidentes.

Quando a luz incidente é de cor azul, essa mudança resulta em elétrons muito mais rápidos. A razão é que a luz pode se comportar não apenas como ondas contínuas, mas também como feixes discretos de energia chamados de fótons. Um fóton azul, por exemplo, contém mais energia do que um fóton vermelho. Assim, o fóton azul age essencialmente como uma "bola de bilhar" com mais energia, desta forma transmitindo maior movimento a um elétron. Esta interpretação corpuscular da luz também explica por que a maior intensidade aumenta o número de elétrons ejetados - com mais fótons colidindo no metal, mais elétrons têm probabilidade de serem atingidos.

Aumentar a intensidade de radiação que provoca o efeito fotoelétrico não aumenta a velocidade dos fotoelétrons, mas aumenta o número de fotoelétrons. Para se aumentar a velocidade dos fotoelétrons, é necessário excitar a placa com radiações de frequências maiores e, portanto, energias mais elevadas.[1]

Equações

Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:

Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido

Mais detalhes em: Energia do fóton

Algebricamente:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Onde:

  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  •  
    ///

    sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

    é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  • ///

    sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

     é a energia cinética máxima dos elétrons expelidos,
  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.

Notas:

Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.


Em física, a força de Lorentz é resultado da superposição da força elétrica proveniente de um campo elétrico  com a força magnética devida a um campo magnético  atuando sobre uma partícula carregada eletricamente que se move no espaço. Tal força é dada pela fórmula:

.
///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Evidentemente, para que a superposição ocorra é necessário que a partícula possua uma carga elétrica líquida não nula () e esteja em movimento em uma região do espaço onde haja um campo magnético. Analisando apenas as forças de caráter elétrico, se a velocidade  for nula, a partícula estará somente sob influência da força elétrica ().

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

A contribuição a  devida à força elétrica  é paralela ao campo elétrico , resultando em aceleração da partícula carregada na mesma direção e sentido do campo; uma partícula com carga negativa sofrerá aceleração no sentido contrário ao do campo. A contribuição referente à força magnética () é sempre perpendicular ao campo  e à velocidade , simultaneamente, conforme dita a regra do produto vetorial.

Vale a pena notar que a força magnética não realiza trabalho, uma vez que é perpendicular ao deslocamento (ou seja, não existe componente de  na direção de . A força magnética altera a direção da velocidade sem alterar o seu módulo. Porém, como a força de Lorentz possui uma componente devida ao campo elétrico, essa, sim, pode realizar trabalho.

Algumas referências[1] definem a força de Lorentz apenas como a componente de origem magnética, dando à força eletromagnética total algum outro nome. Neste artigo, o termo força de Lorentz refere-se à força elétrica mais a força magnética. A componente magnética da força de Lorentz se manifesta também como a força que atua em um fio conduzindo uma corrente elétrica imerso em uma região com campo magnético, também conhecida como força de Laplace.

As aplicações da força de Lorentz são muitas, como, por exemplo, em:

História

Joseph Priestley, amigo de Benjamin Franklin, foi o primeiro a publicar, em 1767, a lei que ditava a força entre duas cargas elétricas a determinada distância, após o pedido de seu amigo para confirmar o resultado de uma experiência que havia realizado[2]. A lei de força entre polos magnéticos (força essa já citada por Isaac Newton em seu Principia) foi descoberta por John Michell, inventor da balança de torção, que publicou seus resultados em 1750. Em suas palavras:

"A atração e repulsão entre 'imãs' diminui enquanto o quadrado da distância entre os respectivos polos aumenta".

Depois de Michell, o resultado foi confirmado por Tobias Meyer em 1760 e pelo famoso matemático Johann Heinrich Lambert em 1766. A lei de Coulomb foi publicada por Charles Augustin de Coulomb apenas em 1785. Em todas essas definições, a força é sempre descrita em termos das propriedades e distâncias dos objetos envolvidos, sem menções a "campo magnético" ou campo "elétrico".

Apesar da força de Lorentz levar o nome do físico holandês, sua expressão foi encontrada por diversos personagens da Física, em diferentes anos[3].

Comumente a força de Lorentz é atribuída a Joseph John Thomson e Oliver Heaviside. Em abril de 1881, Thomsom publicou um artigo[4] onde apresentava a expressão para a força exercida sobre uma partícula eletrizada em movimento numa região de campo magnético. Neste artigo, Thomson partiu da ideia, baseada na teoria de Maxwell, que a variação temporal do vetor deslocamento elétrico  em um dielétrico produz efeitos análogos aos de uma corrente de condução. Thomson encontrou um resultado que é metade do valor hoje aceito:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Em novembro de 1881, FitzGerald publica um artigo apontando uma má interpretação em relação à corrente de deslocamento na publicação de Thomson. E em abril de 1889 Heaviside publica um artigo[5] onde apresenta a expressão hoje usada para descrever a força magnética. A equação da força que inclui a contribuição simultânea do campo elétrico e magnético foi escrita somente em 1892, por Hendrik Antoon Lorentz, em um artigo publicado no volume 25 dos Archives Néerlandaises des Sciences Exactes et Naturelles. Chamada por ele de "força ponderomotiva", a hoje denominada a força de Lorentz foi obtida com o auxílio de seis hipóteses, a partir de uma perspectiva mecânica, e das equações de Maxwell. A dedução feita por Lorentz pode ser encontrada na página 35 da referência [3].

Joseph Larmor e Karl Schwarzschild também obtiveram a fórmula obtida anteriormente, porém, através do Princípio da Mínima Ação, em 1898 e 1903, respectivamente. O caminho até a formulação se encontra na página 41 da mesma referência [3].

Força de Lorentz em termos de campos potenciais

O campo elétrico  e magnético  podem ser escritos em termos do potencial eletrostático  e do vetor potencial magnético , respectivamente.

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Assim, a equação para força de Lorentz se torna:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Aplicando a identidade de produto vetorial triplo, a equação se simplifica para

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Força de Lorentz através do Lagrangiano

lagrangiana  de uma partícula com carga  e massa , em uma região com um campo eletromagnético, fornece sua dinâmica em termos de sua energia

[6]
///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

sendo possível chegar à equação da força de Lorentz utilizando as equações de Euler-Lagrange.

Trajetórias

Esquema da trajetório de uma partícula carregada movendo-se numa região de campo magnético.

Existe um grande interesse prático no estudo da força de Lorentz e em como essa define a trajetória de uma partícula carregada. No caso de uma partícula movendo-se em um plano perpendicular ao campo magnético, esta realizará um movimento circular uniforme. Igualando a força centrípeta, envolvida no movimento circular, com a força magnética, temos que:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

de modo que o raio descrito pela partícula será:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Caso a partícula apresente uma componente de sua velocidade paralela à direção do campo magnético , esta realizará um movimento de translação junto com o movimento circular, combinados em um movimento helicoidal (ver figura ao lado).

Num tubo de raios catódicos, dispositivo presente em muitos monitores e televisores, a posição com que um feixe de elétrons atinge uma tela revestida de fósforo, é controlada, via força de Lorentz, pelo campo magnético existente na região entre placas cujos terminais se faz passar uma corrente elétrica.





Lei de Biot-Savart é uma equação do Eletromagnetismo que fornece o campo magnético  gerado por uma corrente elétrica  constante no tempo. Essa equação é válida no domínio da Magnetostática. Podemos dizer que a Lei de Biot-Savart é o ponto de partida para a Magnetostática, tendo assim um papel semelhante à Lei de Coulomb na Eletrostática.[1]

Motivação histórica

Ilustração esquemática do experimento de Oersted.

Já no século XVII havia, dentro da comunidade científica, a suspeita de que fenômenos elétricos e magnéticos pudessem estar interligados. Isso motivou o físico Hans Christian Oersted a conduzir experimentos para observar o efeito da eletricidade numa agulha magnética. Entre 1819 e 1820, Oersted observou que ao se posicionar um fio condutor de um circuito elétrico fechado paralelamente à agulha, essa sofria uma deflexão significativa em relação à sua direção inicial. Oersted publicou os resultados de seu experimento em julho de 1820, limitando-se a uma descrição qualitativa do fenômeno.

A descoberta de Oersted foi divulgada em setembro de 1820 na Academia Francesa, o que motivou diversos estudiosos na França a repetirem e estenderem seus experimentos. A primeira análise precisa do fenômeno foi publicada pelos físicos Jean-Baptiste Biot e Félix Savart, os quais conseguiram formular uma lei que descrevia matematicamente o campo magnético produzido por uma distribuição de corrente elétrica.[2]

A equação

Distribuições unidimensionais

Para distribuições unidimensionais de corrente, a lei de Biot-Savart possui a seguinte forma:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Nessa equação,  é um elemento infinitesimal de comprimento ao longo do trajeto da corrente,  é o vetor corrente elétrica e  é o versor ao longo da linha que une o elemento infinitesimal de comprimento , cuja posição é , ao ponto de cálculo do campo :

,
///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

e a constante  é a chamada permeabilidade magnética do vácuo

Distribuições bidimensionais

Podemos escrever uma expressão análoga para distribuições bidimensionais de corrente:



///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Onde  é a corrente por unidade de comprimento-perpendicular-ao-fluxo, também chamada densidade superficial de corrente. Escreve-se:



///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Distribuições tridimensionais

Para distribuições tridimensionais de corrente: 

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Onde  é a corrente por unidade de área-perpendicular-ao-fluxo, também chamada densidade volumétrica de corrente. Escreve-se:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Notamos também que o elemento infinitesimal de comprimento  deve ser substituído pelo elemento infinitesimal de área  no caso de distribuições de corrente bidimensionais, e pelo elemento infinitesimal de volume  no caso de distribuições de corrente tridimensionais. Em todos os casos expostos nessa sessão, as correntes envolvidas são estacionárias.[3]

Aplicações

Campo de uma corrente retilínea num fio condutor

Ilustração do problema

A Lei de Biot-Savart pode ser empregada para calcular o campo magnético que uma corrente estacionária de intensidade  passando por um fio retilíneo infinito causa num ponto  a uma distância  do fio. Pela regra da mão direita vemos que o produto vetorial , para  fixo, está contido em círculos de raio  em torno do fio. O versor ao longo de tais círculos é representado por . Trabalhando em termos do ângulo 

Como 

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

E como 

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Para um trecho de fio indo de  a :







///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Se o fio for infinito, então  e  e a expressão fica apenas:  [4]

Campo no centro de um polígono de n lados

Geometria de um quadrado

De acordo com o raciocínio empregado anteriormente, o campo gerado no centro de um quadrado por um de seus lados vale: 

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

já que o campo gerado por cada lado aponta na direção perpendicular ao plano do quadrado (ou seja, se o quadrado estiver contido no plano xy, o campo apontará na direção de z positivo). Pelo princípio de superposição, o campo gerado pelo quadrado é apenas a soma dos campos gerados por cada um de seus lados: 

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde  é a menor distância do centro do quadrado até um de seus lados. Podemos generalizar esse resultado para um polígono de n lados fazendo . Então obtemos:  [3]

Campo de uma espira circular no eixo

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Campo de uma espira circular

Consideremos uma espira circular de raio  percorrida por uma corrente estacionária de intensidade . Podemos usar a Lei de Biot-Savart para calcular o campo magnético a uma distância  do eixo. Lembrando que: 

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

No caso da espira circular: 

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Por questões de simetria, sobre o eixo as componentes do campo paralelas ao plano da espira se cancelam, restando apenas a componente ao longo do eixo. Da figura vê-se que: 

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Logo: [5]

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Direção das linhas de campo magnético

Mesmo quando utilizar a Lei de Biot-Savart para calcular o valor do campo numa região não é a estratégia mais eficiente, ela pode nos dar informações sobre a direção das linhas de campo. Para um elemento infinitesimal de corrente, temos:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

que nos diz que em cada ponto, o campo magnético terá a direção do pseudo-vetor , que é dada pela regra da mão direita. Se posicionarmos o polegar na direção de um elemento de corrente e curvarmos nossos dedos de forma a envolvê-lo, obteremos a direção das linhas de campo naquele ponto.[5]




força magnetomotriz provê um meio matemático para definir um campo magnético em eletromagnetismo clássico. É análogo ao potencial elétrico o qual define o campo elétrico na eletrostática. Existem dois meios para definir este potencial - como um escalar e como um vetor potencial. O vetor potencial magnético é usado muito mais frequentemente que o potencial magnético escalar.

O vetor potencial magnético é frequentemente chamado simplesmente o potencial magnético, vetor potencial, ou vetor potencial electromagnético. Se o vetor potencial magnético é dependente do tempo, ele também define uma contribuição ao campo elétrico.
A força magnetomotriz , dada em Ampére-espira  é diretamente proporcional ao número de espiras na bobina e diretamente proporcional à corrente elétrica que circula na bobina,[1] logo:



onde:

: força magnetomotriz;  (Ampére-espira)

: número de enrolamentos na bobina

: corrente elétrica que circula pela bobina;  (Ampére)

Analogia com a Lei de ohm

Fazendo uma analogia com a Lei de ohm, é possível calcular a , considerando um circuito magnético fechado (fonte CA, bobina e núcleo de ferro), onde:

Aplicando a lei de ohm:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL


onde:
: Relutância magnética;  (Ampére-espira por Weber).
: Fluxo magnético;  (Weber).





fotão (português europeu) ou fóton (português brasileiro) é a partícula elementar mediadora da força eletromagnética. O fóton também é o quantum da radiação eletromagnética (incluindo a luz). A palavra photon foi criada por Gilbert Lewis em 1926.[2] Fótons são bósons e possuem Spin igual a um. A troca de fótons (virtuais1) entre as partículas como os elétrons e os prótons é descrita pela eletrodinâmica quântica, a qual é a parte mais antiga do Modelo Padrão da física de partículas. Ele interage com os elétrons e núcleo atômico sendo responsável por muitas das propriedades da matéria, tais como a existência e estabilidades dos átomosmoléculas, e sólidos.

Em alguns aspectos um fóton atua como uma partícula, sendo que a explicação satisfatória para esse efeito foi dada em 1905, por Albert Einstein pelo Efeito fotoelétrico. Em outras ocasiões, um fóton se comporta como uma onda, tal como quando passa através de uma lente ótica. De acordo com a conhecida dualidade partícula-onda da mecânica quântica, é natural para um fóton apresentar ambos aspectos na sua natureza, de acordo com as circunstâncias que se encontra. Normalmente, a luz é formada por um grande número de fótons, tendo a sua intensidade ou brilho ligada ao número deles. Para baixas intensidades, são necessários equipamentos muito sensíveis, como os usados em astronomia, para detectar fótons individuais.

Símbolo

Um fóton é usualmente representado pelo símbolo  (gama), embora em física de altas energias este símbolo se refira a fótons de energias extremamente altas (um raio gama).

Propriedades

Os fótons são comumente associados com a luz visível, o que só é verdade para uma parte muito limitada do espectro eletromagnético. Toda a radiação eletromagnética é quantizada em fótons: isto é, a menor porção de radiação eletromagnética que pode existir é um fóton, qualquer que seja seu comprimento de ondafrequênciaenergia ou momento. Fótons são partículas fundamentais que podem ser criados e destruídos quando interagem com outras partículas, mas é conhecido que decaiam por conta própria.[carece de fontes]

Diferente da maioria das partículas, fótons não tem uma massa intrínseca detectável, ou "massa restante" (que se opõem a massa relativística). Fótons estão sempre se movendo à velocidade da luz (a qual varia de acordo com o meio no qual ela viaja) em relação a todos os observadores. A despeito da sua ausência de massa, fótons têm um momento proporcional a sua frequência (ou inversamente proporcional ao seu comprimento de onda), e seu momento pode ser transferido quando um fóton colide com a matéria (como uma bola de bilhar em movimento transfere seu momento para outra bola). Isto é conhecido como pressão de radiação a qual deve ser algum dia usada como propulsão como um veleiro solar.

Fótons são desviados por um campo gravitacional duas vezes mais que as predições da mecânica Newtoniana predisse para uma massa viajando a velocidade da luz com o mesmo momento de um fóton. Esta observação é comumente citada como uma evidência que daria suporte a relatividade geral, uma teoria da gravidade de muito sucesso publicada em 1915 por Albert Einstein. Na relatividade geral, os fótons sempre viajam a velocidade da luz em uma linha "reta", depois de se levar em conta a curvatura do espaço-tempo. (Em um espaço curvo, isto é chamado de geodésica).

Criação

Fótons são produzidos por átomos quando um elétron de valência move-se de um orbital para outro orbital com (menos ou mais) energia negativa. Fótons também podem ser emitidos por um núcleo instável quando este decai por algum tipo de decaimento nuclear. Além disto, fótons são produzidos sempre que partículas carregadas são aceleradas.

Átomos continuamente emitem fótons devido suas colisões mútuas. A distribuição do comprimento de onda destes fótons portanto está relacionada a sua temperatura absoluta (usualmente em Kelvin). A distribuição de Maxwell-Boltzmann prevê a possibilidade de um fóton possuir um determinado comprimento de onda ao ser emitido por uma coleção de átomos a uma dada temperatura. O espectro de tais fótons normalmente se encontra entre a faixa da micro-onda e do infravermelho, mas objetos aquecidos irão emitir luz visível também.

Rádiotelevisãoradar e outros tipos de transmissores usados para telecomunicação e monitoramento remoto rotineiramente criam uma extensa variedade de fótons de baixa-energia pela oscilação de campos elétricos em condutoresMagnetrons emitem fótons coerente usado em fornos micro-ondaTubos Klystron são usados quando as emissões de micro-onda devem ser mais precisamente controladas. Masers e laser criam fótons monocromáticos por emissão estimulada. Fótons mais energéticos podem ser criados por decaimento nuclearaniquilação partícula-antipartícula, e colisão de partículas de alta energia.

Spin

Os fótons tem spin 1 e são, portanto, classificados como bósons. Os fótons são os mediadores dos campos eletromagnéticos. Por isto, eles são as partículas que possibilitam que outras partículas interajam com outras partículas eletromagnéticas e com campos eletromagnéticos, por isto eles são também conhecidos como bóson de calibre. Em geral, um bóson com spin 1 deveria possuir três projeções de spin distintas (-1, 0 e 1). Contudo, a projeção zero requer um referencial aonde o fóton esteja em repouso. Devido a sua massa de repouso ser zero, tal referencial não existe, de acordo com a teoria da relatividade. Então os fótons no vácuo sempre viajam a velocidade da luz, e mostram somente duas projeções de spin, correspondendo as duas polarizações circulares opostas. Por causa de sua massa intrínseca zero, fótons são consequentemente sempre polarizados transversalmente, da mesma forma que as ondas eletromagnéticas o são, no espaço vazio.

Estado quântico

luz visível do Sol, ou de uma lâmpada, é comumente uma mistura de muitos fótons de diferentes comprimentos de onda. Uma visão deste espectro de frequência, pode ser obtida por exemplo pela passagem da luz por um prisma. Neste co-denominado "estado misto", que estas fontes tendem a produzir, a luz se constitui de fótons em equilíbrio térmico (também denominado de radiação de corpo negro). Onde eles são de muita forma, semelhantes às partículas de um gás. Por exemplo, eles exercem pressão, conhecida como pressão de radiação, na qual (em parte) origina a aparência dos cometas quando eles estão viajando próximos ao Sol.

Por outro lado, um arranjo de fótons também pode existir em estados muito mais bem organizados. Por exemplo, nos denominados estados coerentes, descreve-se uma luz coerente como as emitidas por um laser ideal. O alto grau de precisão obtido com instrumentos a laser advém desta organização.

Absorção molecular

Uma molécula típica, , possui vários níveis de energia diferentes. Quando uma molécula absorve um fóton, sua energia aumenta em uma quantidade igual à da energia do fóton. A molécula então entra em um estado excitado.

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Fótons no vácuo

No espaço vazio, conhecido como vácuo perfeito, todos os fótons se movem a velocidade da luzc, determinada como sendo igual a 299 792 458 metros por segundo, ou aproximadamente 3×108 m s−1. O metro é definido como a distância percorrida pela luz no vácuo em 1/299 792 458 de um segundo, como a velocidade da luz não oferece qualquer incerteza experimental, diferente do metro ou do segundo, tanto que confiamos no segundo sendo definido por meio de um relógio muito preciso.

Segundo um princípio da relatividade restrita de Einstein, todas as observações da velocidade da luz no vácuo são as mesmas para todas as direções e para qualquer observador em um referencial inercial. Este princípio é geralmente aceito na física desde que muitas consequências práticas para as partículas de alta-energia tem sido observadas.

Fótons na matéria

Quando fótons passam através de material, tal como num prisma, frequências diferentes são transmitidas em velocidades diferentes. Isto é chamado de refração e resulta na dispersão das cores, onde fótons de diferentes frequências saem em diferentes ângulos. Um fenômeno similar ocorre na reflexão onde superfícies podem refletir fótons de várias frequências em diferentes ângulos.

relação de dispersão associada para fótons é uma relação entre a frequênciaf, e comprimento de onda, λ. ou, equivalentemente, entre sua energiaE, e momentop. Isto é simples no vácuo, desde que a velocidade da onda, v, é dada por

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

As relações quânticas do fóton são:

 e 
///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Onde h é constante de Planck. Então nós podemos escrever esta relação como:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

que é característica de uma partícula de massa zero. Desta forma vemos como a notável constante de Planck relaciona os aspectos de onda e partícula.

Em um material, um par de fótons para a excitação do meio e comportamento diferente. Estas excitações podem ser frequentemente descritas como quase-partículas (tais como fónos e excitons); isto é, como onda quantizadas ou entidades quase-partículas propagando-se através da matéria. O "Acoplamento" significa que os fótons podem transformar nesta excitação (isto é, o fóton são absorvidos e o meio excitado, envolvendo a criação das quase-partículas) e vice-versa (as quase-partículas transformam-se de volta em um fóton, ou o meio relaxa pela re-emissão de energia na forma de fótons). Contudo , como estas transformações são as únicas possíveis, eles não estão ligados para acontecer e o que realmente propaga-se através do meio é uma polarização; isto é, uma superposição quântica-mecânica da energia quântica iniciada em um fóton e de uma excitação de uma quase partícula material.

De acordo com as regras da mecânica quântica, uma medição (aqui: na observação é que acontece a polarização) quebra a superposição; isto é, o quantum é absorvido pelo meio e permanece lá (como acontece em um meio opaco) ou re-emerge como um fóton da superfície para o espaço (como acontece em um meio transparente).

Excitações no material tem uma dispersão não-linear; isto é; seu momento não é proporcional a sua energia. Portanto, estas partículas se propagam mais devagar do que a velocidade da luz no vácuo. (A velocidade de propagação é a derivada da relação dispersão com seu respectivo momento.) Esta é a razão formal porque a luz é mais lenta em um meio (tal como o vidro) do que no vácuo. (A razão da difração pode ser deduzida disto pelo princípio de Huygens.) Outro meio de explicar isto é dizer que o fóton, por começar a se misturar com o meio excitado para forma a polarização, adquire um efeito de massa, o que significa que ele não pode viajar a c, a velocidade da luz no vácuo.

Os quanta (plural de quantum) virtuais são partículas hipotéticas trocadas entre partículas carregadas. Se são partículas verdadeiras ou não é um assunto sujeito a uma certa controvérsia. Supõe-se que efeitos como o efeito Casimir sejam provas evidentes da existência de fotões virtuais, embora essa hipótese não seja totalmente aceita.[carece de fontes]

Comentários

Postagens mais visitadas deste blog